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J. Phys. A: Math. Gen. 14 (1981) 3241-3245. Printed in Great Britain 

Geometrical description of quantal state determination 

I D IvanoviC 
Department of Physics and Meteorology, Faculty of Sciences, POB 550, 11000 Belgrade, 
Yugoslavia 

Received 11 February 1981, in final form 21 May 1981 

Abstract. Under the assumption that every quantal measurement may give data about the 
post-measurement state of the inspected ensemble, the problem of the state determination 
is reconsidered. It is shown that orthogonal decomposition of the set of complex, n x n, 
Hermitian matrices into the commutative subsets allows operators to be found such that 
post-measurement information on these observables allows a partial (in same cases total) 
determination of the pre-measurement state to be effected. 

1. Introduction 

In the ordinary formalism of quantum mechanics the state of a quantum ensemble is 
described by a statistical operator W. In complex n-dimensional space C", W is a 
complex II x n Hermitian matrix characterised by W 3 0 and Tr( W) = 1. The mean 
value of some observable A is given by (A) = Tr(A W). 

If W is some unknown state, it may be determined using n 2  mean values (A(k)) 
obtained from measurements, if the set {A(k'} is a basis in the space of all complex 
Hermitian n x n matrices, V,(C"). The case of the complete determination was solved 
by Fano (1957) and later by Park and Band (1971). The case of incomplete deter- 
mination was solved by Wichmann (1963). 

In this note we shall consider the case that occurs when measurement of an 
observable A = Z besides the mean value (A) = Z W @ k ,  gives the probability 
distribution {wk} or, equivalently, if it gives (A), (A'), . . . , (A"-') in the case that A is a 
non-degenerate observable. This means that n - 1 observables A k  are measured by the 
same measurement procedure. A necessary condition is that the number of elements in 
the ensemble must be very large. The spin measurement by means of a Stern-Gerlach 
type procedure belongs to this class. 

Accepting this possibility, every complete measurement (measurement of an 
observable with non-degenerate spectrum) will give n mean values (pk) = Tr( WPk) = 
wk, k = 1, . . . , n, where p k  are eigen-projectors of the measured observable. 

The set {pk} is a complete, orthogonal set of one-dimensional projectors (CPS). It 
will be shown that different CPS {Pk}, {Qj}, . . . can be found that possess the property 

Tr(PkQj) = l /n .  

When these CPS are associated with observables subject to measurement as described 
above, we shall demonstrate the possibility of partially (in some cases totally) recon- 
structing the pre-measurement state from the measurement data. The assumption that 
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every Hermitian operator corresponds to some observable (Swift and Wright 1980) is 
adopted in this note. 

2. States and measurements 

Following the usual description (Wichmann 1963, Bloore 1976, Harriman 1978), the 
set of all W, W(C”) ,  is a subset of vh(C”). Over the field of real numbers vh(c”)  is an 
n2-dimensional real Euclidean space with scalar product (A,  B )  = Tr(AB), for A, B E 

Vh(C”), and norm lIAll= (Tr A2)’”. W(C”)  is a convex set, having one-dimensional 
projectors as the extrema1 points and boundary points W with det W = 0. 

The non-selective, complete measurement of the observable A = E will 
change the pre-measurement state w = C k  W k P i ” ’  into 

where M(Pk)A = PkAPk is a projector in vh(c”) (projecting on Pk) and M({Pk}) = 
M(Pk) is a projector into the subspace v ( { P k } )  E vh(c”) .  In the case of (I)  w ( ~ ’ E  

V({PiA)}) and V({PiA’}) is a subspace spanned by {PiA’}.  dim[ V({PiA’})] = n 
because {PiA’} is CPS. In vh(c“) ,  (1) is the orthogonal projection of W into the 
V({PiA’}), determined by n projections (PiA’)  = w(kA’ of which n - 1 are independent 

It may occur that the ensemble that should be described by W(A’, i.e. the post- 
measurement ensemble, was in fact destroyed by the act of measurement, but this point 
is unimportant. A more important fact is that if one concentrates on a single element of 
the ensemble, e.g. that described by Pi”’, the measurement process will change it into 
some PiA’ with probability w k i  = Tr(PIW’P(kA’), and in vh(c”) this change Piw’ + PiA) is 
a rotation, not a projection. However, for an ensemble of elements described by Pi”’ 
the measurement process will project it into V({PiA’}). 

If {wk}  and { w i A ) }  are non-increasingly ordered sequences of eigenvalues of W and 

( x k  wiA’ = 1). 

, 

for r = 1 , 2 , .  . . , n, then 
\ 1/2 

and 

s( w) = wk In wk s( W‘A’) 
k 

(Ruch and Mead 1976). 

values of W and W(A),  
If P( W) = x k  Pi”’ and P( W‘A’) = X k  PiA’, where k numbers only non-zero eigen- 

P( W )  s P( W‘A’). (3) 
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3. Determination of W 

The set Wy)  of all pre-measurement states associated with a particular post- 
measurement state via equation (1) is a convex subset of W(C") ,  and every W E  W g )  
must satisfy (2) and (3). 

Pure, extrema1 points of wY) are projectors on vectors 

where PiA) = /ak)(ak I and (Pk are free parameters. A boundary point may be obtained as 
a convex combination of extremals, or in the following way: if W(A) = a W1 + (1 - a )  W,, 
O G  a G 1, W1, W,, W ( A ) ~  V({PiA)}) ,  and if Q1 and Q2 are pure states such that 
M(A)Q, = W1 and M(A)Q2 = W,, then W'=  aQ1 + (1 - u)Q2€ W y ) ,  etc. 
Geometrically, W?) is the intersection of n, (n2 - 1)-dimensional hyperplanes hk = 
{ H E  V h ( C n ) l  Tr(HPLA') = whA'} and w(c"). 

If m complete measurements of observables 
n A(')= at)P!)  

k = l  

are performed and m post-measurement states 

obtained, for r = 1,2 ,  . . . , m, the pre-measurement state W, may be any state from the 
intersection 

(6) w$) n w%) n . . . n ~ S y m )  = wZxm, 
When the set of states, (6), contains only one state the determination is completed, 

and in the general case m 2 n + 1. The equality is achieved when n + 1 measured 
observables A(') have such CPS that n2 projectors 

are linearly independent. In v h ( c " )  this set will be some non-orthogonal normed basis. 
Two non-commuting projectors P and Q cannot be orthogonal but their projections 

in the hyperplane v h ( c " ) ,  v h ( c " )  = {H E v h ( c " ) I  Tr HWo = I/n}, P = P -  W, and 
Q = Q - WO, where WO = ( l / n ) l ,  are orthogonal if Tr(PQ) = l /n .  Furthermore, two 
CPS, e.g. {Pk} and {Qj}, are orthogonal in v h ( C " )  if 

Tr(PkQj) = l / n  (7)  
for k ,  j = 1,2,  . . . , n. This property was used by Schwinger (1960) for similar purposes, 
and in particular, if (7) is satisfied 

(8) M({Qk})(I: ajpj) = M({pj})(I:  bkQk) = WO, 
for any real combination I: a, = I: b, = 1. 

The convenience of CPS orthogonal in v h ( c " )  is more visible from the following. If 
m post-measurement states, ( 5 ) ,  are known so that for s, r = 1, 2 , .  . . , m and j ,  k = 
1,2,  . . . , n 

Tr(Pj"'Pf') = ( l / n ) ( l  - a,, + n&,Sjk) (9) 
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then 
m 

r =  1 
w,,= C W"'-(m-l)Woe w",~ 

if WO, 3 0 ,  and 

I1 Woxll~ llWkIl7 w: E w5Xm. 

Applying (8) and having in mind that M"'W'" = W(r', M")Wo, = W'" for r = 
1 ,2 ,  . . . , m and WO, E WF. The proof of (1 1) is as follows. If W: = WO, +A,  Tr A = 0. 
M'"W: = W(r' and M"'A = 0 so that Tr( W"'A) = 0 for r = 1, . . . , m. ( 1  W:ll= 
(Tr( WO, +A)')'/' = (Tr W;, + Tr 3 1) Woxll. 

The significance of (1 1) stems from the fact that incomplete determination asks for 
some side criterion in order to point out a certain characteristic state from Wgm. (10) is 
of minimal norm which is, for simple systems, quite similar to the maximal entropy 
(Wichmann 1963) and (11) is the consequence of the fact that WO, is a linear 
combination of orthogonal, mutually 'orthogonal', projections. 

The special case of (1 1) is when m = n + 1, and then 

is the unique reconstruction of the pre-measurement state. 

4. Example of orthogonal decomposition of vh( C") 

In order to find n + 1 CPS orthogonal in vh(Cn) ,  satisfying (9), one should solve the set of 
equalities 

\(asla z) l  = n-"' (1 - 8,r + n '"8,r8jk) (13) 

where P(kr' = ~ a ~ ) ( a ~ ~ .  One may arrange n + 1 unitary operators whose rows are vectors 
from (13). When n is a prime number, the corresponding unitary operators are 

exp[(2xi/n)(j + k - I)'], [U 3 - - I / '  
j k  - n 

That (14) are unitary operators follows from 

for integer a # 0, f n, 12n .  The unitarity of operators in (14) is equivalent to (13) for 
s = r. The equality in (13) for s # r corresponds to I[U,U:]jk/ = n-l", and that follows 
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from 

exp[(2.rri/n)(ak2+ b k ) ]  = a-''' 

for a, b integers, a # 0, f n ,  *2n, and n prime. The set of CPS (9) is {VTkU:} ,  
k = 1,2,  . , . , n and r = 1,2,  . . . , n + 1, where {Pk} is CPS diagonal in the basis used to 
express (14). What is achieved for prime n is orthogonal decomposition vh(c")  = 1 0  
vh(c" )  = 10 V({pP)})@ . . . 0 V({P',""'}). Having this in mind, any A E vh(c")  may 
be represented by A = 

When n is not prime and n = I I k  nk is its prime decomposition, in analogy with (14) 
one may construct n, s nk CPS satisfying (9). 

M'"A - Tr A, whose special case is (12). 

5. Conclusions 

In this formal and geometrised approach to the state determination, the span of vh(c") 
has a role similar to that of the C" span in the state preparation, and the concept of 
quantum measurement becomes more 'visible' than in the ordinary approach. 

However, a real state determination is completely dependent on the number of 
available measurement procedures, and this may serve to compare the possibilities 
allowed by the Hilbert space formulation of quantum mechanics, with the measurable 
properties of the inspected ensemble. 

The orthogonal decomposition of vh(Cn) is in fact a generalisation of the spin ] = 4 
example, when (9) is satisfied by the eigen-projectors of s,, s, and s,, and (12) becomes 

w =  w,+ w,+ Wz-1, 

where Wi are post-measurement states of the analysed ensemble after the passage 
through the appropriately oriented Stern-Gerlach set-up. 

For higher dimensions this orthogonalisation may have, perhaps, an aesthetic value, 
but the important fact is that the number of measurements necessary for the state 
determination increases linearly with n, which together with (3) gives, at least in 
principle, a possibility for the state determination to be made even for large n. 
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